Doctors Aren’t Sure How This Even Came Out of a Patient

The New England Journal of Medicine tweeted the most recent addition to its photo series of the most visually arresting medical anomalies. The image is of a mysterious, branchlike structure that, posted elsewhere, would probably pass for a cherry-red chunk of some underground root system or a piece of bright reef coral. But this is no creature of the deep. It’s a completely intact, six-inch-wide clot of human blood in the exact shape of the right bronchial tree, one of the two key tubular networks that ferry air to and from the lungs. And it was coughed up in one piece.


The clot is beautiful, and it’s also kind of gross. The tweet received a slew of replies from those frightened that the photo showed an actual coughed-up lung, which is about as likely to happen as your brain falling out of your butt. But even the doctors who treated the 36-year-old man who produced the clot aren’t entirely sure how it could have emerged without breaking.

Georg Wieselthaler, a transplant and pulmonary surgeon at the University of California at San Francisco, says the unnamed patient was initially admitted to the intensive-care unit with aggressive end-stage heart failure. Wieselthaler quickly connected the patient’s struggling heart to a pump designed to help maximize blood flow through the body. But this type of ventricular-assist device comes with its own risks. “You have high turbulence inside the pumps, and that can cause clots to form inside,” Wieselthaler says. “So with all these patients, you have to give them anticoagulants to make the blood thinner and prevent clots from forming.”

“We were astonished,” Wieselthaler says. “It’s a curiosity you can’t imagine—I mean, this is very, very, very rare.”

Still, for all these cases, only the mother-to-be coughed up a cast made of blood, the largest ever photographed until UCSF’s. Congealed blood is less sturdy and sticky than hardened lymph or mucus, so why didn’t the cast break apart?
Wieselthaler suspects the answer might involve fibrinogen, a protein component of blood plasma that essentially acts as the “glue” of a clot by trapping platelets to form a mass. The infection that Wieselthaler’s patient had, in addition to aggravating his heart failure, caused a higher-than-normal concentration of fibrinogen in his blood. It’s possible, Wieselthaler says, that the blood in his airways was unusually rubbery, capable of surviving the bumpy ride up the trachea unscathed.

Gavitt Woodard, a clinical fellow in UCSF’s thoracic-surgery department who helped Wieselthaler capture the photo, suggests that the size of the clot itself may have been what allowed the patient to cough it up. It’s possible that “because it was so large, he was able to generate enough force from an entire right side of his thorax to push this up and out,” she says. Were it broken up into smaller segments, “he might not have been able to generate the force.”
Wieselthaler says that although his patient felt instantly better after coughing up the clot, its size clearly indicated the severity of his situation. Wieselthaler and Woodard put the man on a breathing tube and were able to stop his bleeding with a more invasive procedure, but the numerous complications of his heart failure were already too severe. He died a week later.
It can feel boorish to admire a by-product of the complete breakdown of a human body. But the photo is captivating because the clot’s structure shows a part of every human body, a biological filigree anyone can appreciate as a part of themselves, too. That’s why Woodard and her mentor shared the photo in the first place: “Recognizing the beautiful anatomy of the human body is the main point of it,” she says.

Comments

Popular posts from this blog

LSTM receives grant to help improve health of people living in informal settlements

UMN researchers focus on improving dermatologic care for sexual and gender minority patients

Surgery and addictions counseling associated with reduced mortality in injection drug users with endocarditis